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Abstract. Optimization problems depending on probability measures corre-
spond to many economic and financial applications. The paper deals with the
case when an empirical measure substitutes the theoretical one. Especially, the
paper deals with a convergence rate of the corresponding estimates. “Classi-
cal” results for independent samples are recalled, situations in which the case
of dependent sample can be (from the mathematical point of view) reduced to
independent case are mentioned. A great attention is paid to weak dependent
samples fulfilling the Φ–mixing condition.
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1 Introduction

Economic activities are usually simultaneously influenced by a random factor and a decision parameter.
Constructing their mathematical models we often obtain optimization problems depending on a probabili-
ty measure. These models can be static or dynamic. Multistage stochastic problems belong to a dynamic
types. Employing a recursive definition we obtain a system of one–stage problems. Consequently, the
results obtained for one–stage problems can be often employed to study multistage cases.

1.1 One–Stage Model

Let ξ (:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) be s–dimensional random vector defined on a probability space
(Ω, S, P ); F (:= F (z), z ∈ Rs) the distribution function of ξ; Fi, i = 1, . . . , s one–dimensional marginal
distribution functions corresponding to F ; PF , ZF the probability measure and support corresponding to
F. Let, moreover, g0(:= g0(x, z)) be a real–valued function defined on Rn ×Rs; X ⊂ Rn be a nonempty
set. If the symbol EF denotes the operator of mathematical expectation corresponding to F, then a rather
general “classical” one–stage stochastic programming problem can be introduced in the form:

Find
ϕ(F ) = inf{EF g0(x, ξ)|x ∈ X}. (1)

In applications very often the “underlying” probability measure PF has to be replaced by an empirical
one. Evidently, then the solution is sought w.r.t. the “empirical problem”:

Find
ϕ(FN ) = inf{EFN g0(x, ξ)|x ∈ X}, (2)

where FN denotes an empirical distribution function determined by a random sample {ξi}Ni=1 correspond-
ing to the distribution function F. If we denote the optimal solutions sets of (1) and (2) by X (F ), X (FN ),
then ϕ(FN ), X (FN ) are stochastic estimates of ϕ(F ), X (F ).

The investigation of these estimates started in 1974 by R. Wets (see [27]). In the same time consistency
has been investigated under ergodic assumption in [10]. These papers have been followed many times
(see e.g. by [5], [19], [20], [22]). The investigation of the convergence rate started in [11], and followed
e.g. by [2], [8], [21], [25], [26]. The investigation for weakly dependent samples started in eighties (see
[12]) and followed e.g. by [2], [8], [13], [14].
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1.2 Multistage Model

A general multistage stochastic programming problem can be in a rather general form introduced recur-
sively (see e.g. [6], [15]) as the problem:

Find
ϕF (M) = inf {EF ζ0 g

0
F (x0, ζ0)| x0 ∈ K0}, (3)

where g0
F (x0, z0) is given recursively

gkF (x̄k, z̄k) = inf{E
F ζk+1|ζ̄k=z̄k g

k+1
F (x̄k+1, ζ̄k+1) |xk+1 ∈ Kk+1(x̄k, z̄k)}, k = 0, 1, . . . , M − 1,

gMF (x̄M , z̄M ) := gM0 (x̄M , z̄M ). (4)
ζj = ζj(ω), j = 0, 1, . . . , M are s–dimensional random vectors defined on a probability space (Ω, S, P );
ζ̄k = ζ̄k(ω) = [ζ0, . . . , ζk], z̄k = [z0, . . . , zk], zj ∈ Rs, xj ∈ Rn, x̄k = [x0, . . . , xk], j = 0, 1, . . . , k, k =

0, 1, . . . , M ; F ζ
j

(zj), F ζ̄
j

(z̄j), j = 0, . . . , M the distribution functions of the ζj and ζ̄j ; F ζ
k|ζ̄k−1

(zk|
z̄k−1), k = 1, . . . , M denotes the conditional distribution function (ζk conditioned by ζ̄k−1). gM0 (x̄M , z̄M )
is a function defined on Rn(M+1)×Rs(M+1); Kk+1(x̄k, z̄k), k = 0, 1, . . . , M−1, are multifunction map-
pings Rn (k+1)×Rs (k+1) into the space of (mostly compact) subsets of X ; X , K0 ⊂ Rn are nonempty sets;

K0 ⊂ X . ZjF ⊂ Rs, j = 0, 1, , . . . , M, denote the supports corresponding to F ξ
j

(·); Z̄kF = Z0
F × . . .×ZkF ,

X̄ k = X × . . .×X , k = 0, 1, . . . , M.

Evidently, the problem given by (3) and (4) is depending on the system:

F = {F ζ
0

(z0), F ζ
k|ζ̄k−1

(zk|z̄k−1), k = 1, . . . , M}. (5)

2 Historical Survey

First we recall “classical” results on consistency and convergence rate.

Theorem 1. [10]. If

1. X is a compact set, g0(x, z) is a uniformly continuous bounded function on Rs ×X,
2. {ξi}Ni=1, N = 1, 2, . . . is a random sample corresponding to ergodic sequence,

then
P{ω : |ϕ(FN )− ϕ(F )| −−−−→

N→∞
0} = 1.

(The ergodicity has been considered in the sense of [1].)

Theorem 2. Let X be a nonempty compact set. If

1. in every x ∈ X the function g0(x, ξ) is a continuous function of x for almost every ξ ∈ ZF ,
2. g0(x, ξ), x ∈ X is dominated by an integrable function,
3. {ξi}Ni=1, N = 1, 2, . . . is independent random sample,

then
P{ω : |ϕ(FN )− ϕ(F )| −−−−→

N→∞
0} = 1.

Proof. The assertion of Theorem 2 follows from Proposition 5.2 and Theorem 7.48 proven in [25].

Theorem 3. [11] Let t > 0, X be a nonempty compact, convex set. If

1. g0(x, z) is a uniformly continuous function on X × ZF bounded by M > 0 (i. e., |g0(x, z)| ≤M),
2. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′,
3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then there exist K(t,X, L′) > 0 and k1(M) > 0 such that

P{ω : |ϕ(F )− ϕ(FN )| > t} ≤ K(t,X, L′) exp{−Nk1(M)t2}.

Remark. The assertion of Theorem 3 is valid independently of the distribution function F ; consequently
also for the distribution functions with heavy tails. On the other hand g0 must be a bounded function.
Moreover under the assumptions of Theorem 3 it has been proven in [13] that

P{ω : Nβ |ϕ(F )− ϕ(FN )| > t} −−−−−→
N−→∞

0 for β ∈ (0, 1
2 ).



If the moment generating function Mg0
(t), corresponding to g0(x, ξ), is defined by the relation

Mg0
(t) := EF {et[g0(x,ξ)−EF g0(x,ξ)]}, then we can recall the following assertion.

Theorem 4. [24] Let X ⊂ Rn be a nonempty closed set, ‖ · ‖ = ‖ · ‖2n denotes the Euclidean norm in
Rn. If

1. for x ∈ X the moment generating function Mg0(t) is finite valued for all t in a neighbourhood of zero,
2. there exists a measurable function κ : ZF → R+, and a constant γ > 0 such that

|g0(x′, ξ)− g0(x, ξ)| ≤ κ(ξ)‖x′ − x‖γ for all ξ ∈ ZF , x, x′ ∈ X,

3. the moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a neighbourhood of zero,

then for any ε > 0 there exist positive constants C = C(ε) and β = β(ε), independent of N , such that

P{sup
x∈X
|EFN g0(x, ξ)− EF g0(x, ξ)| ≥ ε} ≤ C(ε)e−Nβ(ε).

3 Wasserstein Metric via Empirical Estimates

Let P(Rs) denote the set of Borel probability measures on Rs, s ≥ 1, ‖ · ‖1sdenote L1 norm in Rs and
M1(Rs) = {P ∈ P(Rs) :

∫
Rs
‖z‖1sP (dz) <∞}. We introduce the following system of the assumptions:

A.1 • g0(x, z) is a uniformly continuous function on X ×Rs,
• g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding to

the L1 norm) not depending on x,

A.2 • {ξi}∞i=1 is independent random sequence corresponding to F ,
• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . ,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1; Fi, fi, PFi , i =
1, 2, . . . , s denote one-dimensional marginal distribution function, probability density and the probabil-
ity measure corresponding to F .

Proposition 1. [16] Let PF , PG ∈M1(Rs), and X be a compact set. If A.1 is fulfilled, then

|ϕ(F )− ϕ(G)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

Replacing G by FN in Proposition 1 and supposing s = 1 we can obtain for the random value
+∞∫
−∞
|F (z)− FN (z)|dz the following result.

Proposition 2. [19] Let s = 1, t > 0 and A.2, A.3 be fulfilled. Let, moreover, N denote the set of
natural numbers. If there exists β > 0, R := R(N) > 0 defined on N , R(N) −−−−→

N→∞
∞ and, moreover,

Nβ
−R(N)∫
−∞

F (z)dz −−−−→
N→∞

0, Nβ
∞∫

R(N)

[1− F (z)]dz −−−−→
N→∞

0,

2NF (−R(N)) −−−−→
N→∞

0, 2N [1− F (R(N))] −−−−→
N→∞

0,

( 12NβR(N)
t + 1) exp{−2N( t

12R(N)Nβ
)2} −−−−−→

N−→∞
0,

(6)

then P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t} −−−−→
N→∞

0. (7)

4 Convergence Rate

4.1 One–Stage Problem: Independent Sample

Theorem 4. [19] Let t > 0, β ∈ (0, 1
2 ), A.1, A.2 and A.3 be fulfilled. Let, moreover, {ξi}∞i=1 be

independent random sequence corresponding to F. If there exists constants C1, C2 and T > 0 such that

fi(zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞,−T ) ∪ (T,∞) and i = 1, 2, . . . , s,



then
P{ω : Nβ |ϕ(FN )− ϕ(F )| > t} −−−−→

N→∞
0.

4.2 One–Stage Problem: m–Dependent Random Sample

To recall a definition of m– sequences, let {ξi}∞i=−∞ be a strictly stationary s–dimensional random vec-
tors. We denote by the symbol Fdc the σ–algebra generated by ξi, c ≤ i ≤ d.

Definition 1. [4] {ξi}∞i=−∞ is said to be m–dependent sequence (m ≥ 2) if Fa−∞ and F∞b are indepen-
dent for b− a > m.

Theorem 5. [17] Let t > 0, {ξi}∞i=1 be a strictly stationary m sequence of s–dimensional random
vectors corresponding to distribution function F. If A.1, A.3 are fulfilled and if there exist C1, C2, T > 0
such that

fi(zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞, −T )
⋃

(T, ∞), i = 1, . . . , s,

then P{ω : Nβ |ϕ(FN )− ϕ(F )| > t} −→(N−→∞) 0 for β ∈ (0,
1

2
).

4.3 Multistage Problem –Markov Dependence

To investigate problems (3) and (4) we restrict to the case when {ζj}∞j=−∞ fulfils the Markov type of

dependence and recall that {ζj}∞j=0 corresponds to a homogenous Markov chains iff ζj , j = 0, . . . , can be

represented by a recurrence equation ζj = H̄(ζj−1, εj), where H̄ is a measurable function and εj , j > 0
is i.i.d. sequence independent of ζ0 (for more details see [3] or [9]). A (rather general) Markov type
dependence has been considered in [15]. We consider only a special case. To this end we assume:

A.4 {ζk}∞k=−∞ follows a (generally) nonlinear autoregressive sequence ζk = H(ζk−1) + εk, where

ζ0, εk, k = 1, 2, . . . are stochastically independent; εk, k = 1, 2, . . .identically distributed. H :=
(H1, . . . , Hs) is a Lipschitz vector function defined on Rs. We denote the distribution function of
ε1 = (ε1

1, . . . , ε
1
s) by the symbol F ε and suppose the realization ζ0 to be known.

If A.4 is fulfilled, then (3), (4) is a s system of one–stage stochastic (mostly parametric) programming
problems. Moreover, the system F is (under A.4) determined by the PF ε Consequently, empirical esti-
mates FN of the F are determined by i.i.d. {εj}Nj=1, N = 1, . . . Evidently, the problems (3), (4) is (from
the mathematical point of view) transformed to one–stage case.

Theorem 6. [18] If

i.1 gkF (x̄k, z̄k), k = 1, . . . ,M are for x̄k, z̄k−1 a Lipschitz function of zk with the Lipsch. const. Lk,

i.2 g0
F (x̄0, z̄0) is for x0 ∈ K0 a Lipschitz function of z0 with the Lipschitz const. L0,

i.3 K0, Kk+1(x̄k, z̄k), k = 0, 1, . . . , k − 1 are compact sets,

i.3 PF εi , i = 1, . . . , s are absolutely continuous with respect to Lebesgue measure on R1 (we denote
by fεi , i = 1, . . . , s the corresponding probability densities,

i.4 there exist constants C1, C2 > 0, T > 0 such that
fεi (zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞, −T )

⋃
(T, ∞), i = 1, . . . , s.

then
P{ω : Nβ |ϕF (M)− ϕFN (M)| > t} −→N−→∞ 0 for T > 0, β ∈ (0, 1/2).

(The conditions under which the assumptions i.1, i.2, i.3 are valid can be found in [15].)

4.4 One–Stage Problem: Φ–Mixing Random Samples

Definition 2. The sequence {ξi}∞i=−∞ is called Φ–mixing (uniformly mixing) whenever there exists ΦN ,
ΦN → 0 as N →∞ fulfilling the relation

|P (A ∩B)− P (A)P (B)| ≤ ΦNP (A), A ∈ Fk−∞, B ∈ F∞k+N , −∞ < k <∞.



Remark. [28] (see also [4]) If {ξi}∞−i=∞ is fulfilling the conditions of Φ–mixing and simultaneously it
is strictly stationary Gaussian sequence, then there exists m such that ξi, i = . . . , −1, 0, 1 . . . is a m
sequence. (The proof of this assertion belongs to Ibragimov ([7]).

Lemma 1. If ξi is a uniformly mixing sequence of centered random variables with |ξi| ≤ 1 such that
∞∑
N=1

ΦN <∞; b−1 = (1 + 4
∞∑
N=1

ΦN ), a = 2 exp 3
√
e and if N and t > 0 satisfy

Nσ2 ≥ 1, 0 ≤ t ≤ σ
√
N

8bkN
for kN = inf{k :

Φk
k
≤ 1

N
}, σ2 = sup

N
EF |ξN |2, (8)

then
P{ω : |

N∑
i=1

ζi| ≥ t
√
Nσ} ≤ a exp{−bt2}. (9)

Furthermore, let us assume that {ξi}∞i=−∞ is one–dimensional strongly stationary random sequence
fulfilling Φ–mixing conditions with coefficients ΦN . If F is the corresponding one dimensional distribution
function, then for every z ∈ (−∞, ∞), i = . . . , −1, 0, 1 . . .

EF I(−∞, z](ξ
i) = F (z), EF [I(−∞, z](ξ

i)−EF I(−∞, z](ξi)]2 = F (z)(1−F (z)),
1

N

N∑
i=1

I(−∞, z](ξ
i) = FN (z).

Evidently, it is easy to see that for every z ∈ R1 it is possible to apply the assertion of Lemma 1 to ran-
dom variable I(−∞, z](ξ

i) with σ2 := σ2(ξi(z)) = F (z)(1−F (z)). However, admitting unbounded support
and setting R ∈ R1, R > 0 then (according to the properties of the distribution functions) it is easy to
see that the relation (8) can be simultaneously for z ∈ (R, R) fulfilled only for “large” N . Moreover,
generally then N fulfilling the relation (8) (simultaneously for z ∈ (−R, R) converges (generally) to ∞
if R converges to ∞. Analyzing the proof of Proposition 2 it is easy to see that employing the approach
of Proposition 1 we have to restrict our consideration to the case of bounded support. The following
assertion can be proven.

Theorem 7. Let t > 0, {ξi}∞i=−∞ be a uniformly mixing sequence of s–dimensional random vectors with

a common distribution function F and a mixing coefficient ΦN such that
∞∑
N=1

ΦN < ∞. Let, moreover,

X be a nonempty, compact set, A.1, A.3 be fulfilled. If

1. there exist Ui > 0, i = 1, . . . , s such that the support of PFi is the interval 〈−Ui, Ui〉,

2. there exist ϑi, ϑ
i, i = 1, . . . , s such that ϑi ≤ fi(zi) ≤ ϑi, zi ∈ 〈−Ui, Ui〉,

3. the mixing coefficients ΦN fulfil the relations (8) for z = max
i
σi(zi), z = (z1, . . . , zs and R := R(z),

then there exists β0 ∈ (0, 1/2) such that

P{ω : Nβ |ϕ(F )− ϕ(FN )| > t} −→N−→∞ 0 for β ∈ (0, β0).

Remark. It is easy to see that the value of β0 depends on the value of Φ mixing coefficients.

5 Conclusion

The paper deals with empirical estimates in the case of stochastic programming problems. First, a con-
sistency results (including ergodic case) has been recalled. However, the aim of the paper has been to
compare the results (concerning convergence rate) obtained under the assumption of independent data
and some types of dependent samples. Consequently, again the “classical” results (Theorem 3 and The-
orem 4) have been recalled. These results have been followed by Theorem 5 and Theorem 6 in which the
the assertions have been proven on the basis of a “transformation” of dependent case to the independent
one. At the end a result for Φ–mixing sequences has been introduced. To present a detail proof of this
last assertion is over the possibility of this contribution. Summarizing we can constant that the former
results (considering the problem (1) and depending samples) published former (e.g. in [14]) has been
extended.
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